Conclusion
In this blog post, the Flooding Attack, Decreased Rank Attack and Version Number Increase Attack in the RPL protocol were trained and detected by “Decision Tree”, “Logistic Regression”, “Random Forest”, “Naive Bayes”, “K Nearest Neighbor” and “Artificial Neural Networks” algorithms.
The test results for the attacks were compared, as a result of the comparison, the Artificial Neural Networks algorithm with an accuracy rate of 97.2% in the detection of Flooding Attacks, the K Nearest Neighbor algorithm with an accuracy rate of 81% in the detection of Version Number Increase Attacks, and the Artificial Neural Networks with an accuracy rate of 58% in the detection of Decreased Rank attacks algorithm has been found to show success.